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Abstract
Background  Stevia glycosides (SGs) have been widely used as an ideal sugar alternative in the food industry. 
However, the potential application of SGs mixture in the diets of weaned piglets remains unexplored. This study 
aimed to investigate the effect of dietary SGs mixture supplementation on growth performance, gene expression of 
gut chemoreceptors, and antioxidant capacity in weaned piglets.

Methods  A total of 216 weaned piglets (Duroc × Landrace × Yorkshire, 7.36 ± 0.04 kg body weight) were randomly 
assigned to 6 groups (6 pens/group with 6 piglets/pen), and were fed with the basal diet supplemented with 0, 100, 
150, 200, 250, or 300 mg/kg SGs mixture for 42 days. The serum, liver, longissimus thoracis, and jejunal samples were 
collected on day 43.

Results  The results showed that inclusion the SGs mixture in the diet did not have a significant impact on growth 
performance from days 1 to 28 (P > 0.05). But increasing the concentration of SGs mixture tended to linearly 
decrease the average daily gain from days 1 to 42 (P = 0.052). However, 150 mg/kg SGs mixture supplementation 
significantly increased the mRNA expression of taste receptor family 1 member 2 (T1R2) and glucose transporters 
2 (GLUT2) in the jejunum (P < 0.05), while 150 and 200 mg/kg SGs mixture supplementation significantly increased 
T1R3 mRNA expression (P < 0.05). Moreover, 150 mg/kg SGs mixture supplementation significantly reduced serum 
malondialdehyde content (P < 0.05). Increasing the concentration of SGs mixture linearly and quadratically increased 
serum total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity, as well as 
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 Background
Steviol glycosides (SGs), a group of diterpenoid glyco-
sides derived from Stevia rebaudiana that are 200 ~ 300 
times sweeter than sucrose, have become an ideal sugar 
alternative [1]. To date, 64 SGs have been identified in the 
leaves of Stevia rebaudiana. Among these, ten glycosides, 
including Stevioside, Rebaudioside A, Rebaudioside B, 
Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebau-
dioside F, Dulcoside A, Rubusoside, and Steviolbioside, 
are found in relatively high abundance [2]. The primary 
differences in the chemical structures of these SGs lie 
in the R1 and R2 groups, which are attached at the C13-
hydroxyl and C19-carboxyl positions, respectively [2]. 
SGs are known for their heat stability, pH stability, non-
caloric properties, and non-fermentative nature [3]. Over 
the past decades, SGs have been demonstrated to be 
non-toxic, devoid of side effects, non-carcinogenic, and 
safe for consumption, leading to their widespread use in 
the food and pharmaceutical industries [4, 5]. Beyond 
sweetness, SGs has multiple bioactivities such as anti-
diabetes, anti-hypertension, anti-oxidation, anti-inflam-
mation, anti-microbial, anti-cancer, and anti-diarrheal [3, 
6–9], with potential performance benefits for livestock 
and poultry.

Weaning stress frequently leads to a decrease in feed 
intake in weaned piglets. The addition of sweeteners 
such as sucrose, glucose, lactose, and natural or artifi-
cial sweeteners to diets improves palatability and helps 
piglets cope with the reduced appetite that results from 
weaning stress [10–13]. Previous studies have shown 
that SGs have the ability to increase feed intake in broiler 
chickens and goats [14–16]. Wang et al. [17] found that 
increasing the dietary stevioside/rebaudioside A supple-
mentation from 0 to 300  mg/kg led to a linear increase 
in average daily feed intake in weaned piglets. However, 
another study showed that dietary stevia addition had no 
beneficial effect on feed intake in newly weaned piglets 
[18]. The steviol glycosides products used in previous 
studies were nearly pure, exceeding 90%, and it is well-
known that purifying products in the industry is a costly 
process. We hypothesize whether replacing these purified 
products with a SGs mixture, which is a more affordable 
option with a simpler production process, would posi-
tively impact food intake in weaned piglets. Moreover, 

in mammals, sweet molecules are typically detected by 
chemoreceptors, which then stimulate pathways associ-
ated with appetite and feed intake [19]. The role gut che-
moreceptors play in SGs mixture sensing needs further 
research. On the other hand, weaning stress can induce 
the body to produce much free radicals, resulting in oxi-
dative stress [20]. Besides, stevioside has been widely 
reported to have excellent antioxidant effect, which can 
alleviate the damage induced by oxidative stress [21]. 
Whether the SGs mixture could alleviate the oxidative 
stress in weaned piglets is still unclear. Therefore, this 
study was conducted to investigate the effects of dietary 
SGs mixture supplementation on performance, expres-
sion of gut chemoreceptors, and antioxidant capacity.

Methods
Steviol glycosides mixture compositions
The SGs mixture used in this study is a white pow-
der provided by Dongtai Hirye Biotechnology Co. 
Ltd (Dongtai, China) with the product batch number 
M20220316. The compositions of SGs in the mixture 
were analyzed using HPLC following China National 
Standard GB 8270 − 2014, and detailed ingredients are 
provided in Table  1. The main components of the SGs 
mixture used in this study are Rebaudioside A (39.90%), 
Stevioside (30.40%), Rebaudioside C (12.40%), Rebau-
dioside F (2.00%), Rebaudioside D (1.00%), Rubusoside 
(0.70%), Rebaudioside B (0.60%), Dulcoside A (0.3%), and 
Steviolbioside (0.2%), and the total SGs is 87.50%. Sen-
sory evaluation was conducted to assess the character-
istics of the SGs mixture [22]. As depicted in Fig. 1, the 
SGs mixture exhibited a delayed onset of sweetness, with 
noticeable bitterness, a slight stringency, and an unpleas-
ant metallic aftertaste when compared with sucrose in an 
iso-sweet water solution.

Animal management and experimental design
A total of 216 weaned piglets (Duroc × Landrace × York-
shire) aged 21 days with an average initial body weight 
(BW) of 7.36 ± 0.04  kg were randomly allocated to six 
treatments. Each treatment consisted of six replicates, 
with six pigs per replicate pen, including three barrows 
and three gilts. The experimental groups comprised 
a control group receiving a basal diet devoid of any 

hepatic T-SOD, GSH-Px activity, and muscle total antioxidant capacity contents (P < 0.05). Furthermore, piglets fed a 
diet supplemented with 100 mg/kg SGs mixture had higher serum T-SOD, CAT, and GSH-Px activities compared with 
the other treatments (P < 0.05).

Conclusions  Therefore, our results suggest that dietary 100 ~ 150 mg/kg SGs mixture supplementation modulates 
gene expression of sweet taste recognition receptors and glucose transporters, while also enhancing the antioxidant 
capacity of weaned piglets.

Keywords  Steviol glycosides, Gut chemoreceptors, Antioxidant capacity, Weaned piglets
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sweeteners, and experimental groups received a basal 
diet supplemented with 100, 150, 200, 250, and 300 mg/
kg SGs mixture (SGs100, SGs150, SGs200, SGs250, and 
SGs300), respectively. Before the commencement of this 
trial, the pigs underwent a 5-day acclimation period. The 
experiment lasted for 42 days. The basal diet (Table  2) 
was formulated according to the nutrient requirement 
recommendations for piglets by the NRC (2012). All 
diets were provided as pellet. Feed intake was recorded 
on a weekly basis in pen units to collectively measure 
consumption levels, while individual pig body weights 
were measured on day 29 and 43. These data facilitated 
the calculation of the average daily gain (ADG), average 
daily feed intake (ADFI), and feed to gain ratio (F/G) over 
the periods of 1 ~ 28 days, 29 ~ 42 days, and 1 ~ 42 days. 
All piglets were housed individually in pens within a 
temperature-controlled and enclosed nursery. The pens, 

measuring 1.2 × 2.1 m2, featured high-rise beds equipped 
with plastic slatted floors and an effective mechani-
cal ventilation system. Each pen was outfitted with two 
stainless steel feeders and four nipple drinkers, ensuring 
that all pigs had ad libitum access to both feed and water.

Sample collection
At the end of the experiment, all the pigs were weighed 
individually after 16-hours fasting. One pig from each 
pen (36 pigs total) was randomly selected for blood col-
lection and sacrifice. A 10 mL blood sample was obtained 
from each pig by anterior vena cava puncture, and serum 
samples were separated by centrifugation at 1509.3 × 
g at 4  °C for 10  min. Then the pig was anesthetized by 
intravenous injection of pentobarbital sodium (30  mg/
kg BW) and killed by bloodletting. The intestinal tis-
sues were dissected on ice and categorized into the duo-
denum, jejunum, and ileum. The middle jejunum tissue 
was sampled, opened, and thoroughly washed with cold 
sterile phosphate-buffered saline. Mucosa samples were 
scraped from the inner side of the jejunum using a ster-
ile slide, and then were collected. Approximately 0.5 g of 
the middle section of longissimus thoracis and the cen-
tral portion of liver tissues from the same region were 
obtained to assess antioxidant capacity indicators. All 
samples were immediately transferred to liquid nitrogen 

Table 1  Identified components and their contents in the steviol 
glycosides mixture used in this study (air-dry basis)
Components Content, %
Stevioside 30.40
Rebaudioside A 39.90
Rebaudioside B 0.60
Rebaudioside C 12.40
Rebaudioside D 1.00
Rebaudioside F 2.00
Dulcoside A 0.30
Rubusoside 0.70
Steviolbioside 0.20
Moisture 3.70
Ash 0.06
High-performance liquid chromatography (HPLC) was used for the identification 
and quantification of stevioside, rebaudioside A, rebaudioside B, rebaudioside 
C, rebaudioside D, rebaudioside F, dulcoside A, rubusoside, and steviolbioside 
following China National Standard GB 8270 − 2014. The contents of moisture 
and ash were determined according to the China National Standard; and the 
document numbers are GB/T 6435 − 2014, and GB/T 6438 − 2007, respectively

Table 2  Composition and nutrient levels of the basal diet (air-
dry basis)
Ingredients % Nutrient levels 2)

Corn 30.34 Digestive energy, MJ/kg 14.69
Puffed corn 20.00 Metabolic energy, MJ/kg 13.55
Puffed soybean 7.02 Net energy, MJ/kg 10.23
Fermented soybean meal 12.00 Crude protein, % 19.78
Soybean meal 6.52 Crude fat, % 4.39
Fish meal 3.20 Ca, % 0.73
Low-protein whey powders 15.00 TP, % 0.51
Soybean oil 1.00 STTD P, % 0.38
Limestone 1.15 SID Lys, % 1.45
CaHPO4 0.65 SID Met + Cys, % 0.71
NaCl 0.25 SID Thr, % 0.84
L-Lysine hydrochloride 0.78 SID Trp, % 0.21
DL-Methionine 0.21 SID Val, % 0.73
L-Threonine 0.29
L-Tryptophan 0.03
Vitamin-mineral premix1) 1.56
Total 100
1)The premix provided the following per kg of diets: VA 12 400 U, VD3 2 800 
U, VE 30 mg, VK3 5 mg, VB12 40 µg, VB1 3 mg, VB2 10 mg, nicotinic acid 40 mg, 
D-pantothenic acid 15 mg, folic acid 1 mg, VB6 8 mg, biotin 0.08 mg, FeSO4•H2O 
120 mg, CuSO4•5H2O 16 mg, MnSO4•H2O 7 mg, ZnSO4•H2O 80 mg, CaI2O6 0.7 mg, 
Na2SeO3 0.30 mg

2)Nutrient levels were calculated values, except that the crude protein, 
crude fat, Ca, and TP levels were determined according to the China National 
Standard; and the document numbers are GB/T 6432 − 2018, GB/T 6433 − 2006, 
GB/T 6436 − 2002 and GB/T 6437 − 2018, respectively

Fig. 1  Comparison of sensory attributes of steviol glycosides mixture 
(0.03%) and sucrose (6%) in iso-sweet water solutions
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for rapid freezing and subsequently stored at -80  °C for 
further analysis.

Appetite-associated hormones detection
Appetite-associated hormones such as ghrelin (GHRL), 
glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), 
leptin (LEP), and insulin (INS) in serum were detected by 
commercial Elisa kits purchased from Jiangsu Meimian 
Industrial Co., Ltd (Jiangsu, China).

Real-time qPCR
The jejunal mucosal tissues were processed to extract 
total RNA using TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA). The concentration and purity of the RNA were 
evaluated using a NanoDrop ND-1000 Spectrophotom-
eter (Nano-Drop Technologies, Rockland, DE), followed 
by monitoring RNA integrity on 1% agarose gels. Subse-
quently, the first-strand cDNA synthesis was conducted 
through reverse transcription of 1  µg total RNA utiliz-
ing the Prime Script RT reagent kit with gDNA Eraser 
(Takara, Tokyo, Japan). Real-time qPCR was conducted 
using the Bio-Rad CFX System in a final volume of 20 µL, 
comprising 2 µL of cDNA product (diluted at 1:9, v/v), 

10 µL of iTaq Universal SYBR Green PCR Supermix (2×, 
Bio-Rad, Hercules, California, USA), 6.4 µL of RNase-free 
water, and 0.8 µL of each forward and reverse primers (10 
µM/L) as detailed in Table 3. The PCR cycling conditions 
included an initial denaturation step (95 °C for 30 s) fol-
lowed by 40 cycles of amplification and quantification 
(95 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s with a 
single fluorescence reading). All measurements were car-
ried out in triplicate. The 2−ΔΔCT method was employed 
to analyze gene expression levels. β-actin was served as 
the housekeeping gene, and the data were normalized to 
the control group.

Serum biochemical parameters measurement
Serum biochemical parameters including serum glucose 
(GLU), total protein (TP), albumin (ALB), urea (URE), 
triglyceride (TG), total cholesterol (CHO), high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), total bilirubin (TBIL), 
alkaline phosphatase (ALP), and creatinine (CRE) were 
detected by commercial kits purchased from Biosino 
Biotechnology and Science inc. (Beijing, China) with an 
automatic biochemical analyzer (Selectra Pro XL, Eli-
TechGroup, Puteaux, France).

Serum immunoglobulins, cytokine determination
Serum immunoglobulin A (IgA), IgG, and IgM, and 
cytokines interleukin-1 (IL-1), IL-1β, IL-6, IL-8, IL-10, 
IL-22, interferon-γ (IFN-γ), tumor necrosis factor-α 
(TNF-α), and TNF-β were measured using commercial 
kits obtained from Jiangsu Meimian Industrial Co., Ltd 
(Jiangsu, China).

Antioxidant capacity evaluation
Malondialdehyde (MDA), total antioxidant capacity 
(T-AOC), total superoxide dismutase (T-SOD), cata-
lase (CAT), and glutathione peroxidase (GSH-Px) were 
assessed using commercial kits purchased from Nanjing 
Jiancheng Bioengineering Institute (Nanjing, China). 
Samples of liver and longissimus thoracis tissues were 
homogenized in physiological saline, and the superna-
tants were harvested after centrifugation for subsequent 
analysis. The final data were normalized to the total pro-
tein concentration in the tissues.

Statistical analysis
The data were analyzed using IBM SPSS Statistics V18.0 
software (IBM Corp., Armonk, NY, USA). Results were 
presented as means with a pooled standard error (SEM). 
Prior to intergroup difference analysis, the normal-
ity of the data was assessed using the Shapiro-Wilk test. 
For variables with non-normal distributions, analysis 
was performed using one-way ANOVA followed by the 

Table 3  Primers used for real-time PCR in this study
Items Nucleotide se-

quence of primers 
(5’-3’)

Prod-
uct 
size, 
bp

GenBank 
Accession

An-
nealing 
temper-
ature, °C

SGLT-1
(SLC5A)

Forward: ​T​C​A​T​C​A​T​C​
G​T​C​C​T​G​G​T​C​G​T​C​T​C
Reverse: ​C​T​T​C​T​G​
G​G​G​C​T​T​C​T​T​G​A​A​
T​G​T​C

144 XM_021072101.1 58

GLUT2
(SLC2A2)

Forward: ​G​C​A​C​A​
T​C​C​T​G​C​T​T​G​G​T​C​T​
A​T​C​T
Reverse: ​C​A​C​T​T​G​A​T​
G​C​T​T​C​T​T​C​C​C​T​T​T​C

203 NM_001097417.1 60.5

GLUT4
(SLC2A4)

Forward: ​A​G​G​C​A​C​C​
C​T​C​A​C​T​A​C​C​C​T​C​T
Reverse: ​C​T​T​C​T​T​C​C​
T​T​C​C​C​A​G​C​C​A​C​T

109 NM_001128433.1 60

T1R2 Forward: ​T​C​G​C​C​T​C​
G​T​G​C​T​G​T​C​A​T​A​G
Reverse: ​C​C​A​C​A​T​C​T​
C​A​G​A​G​C​C​T​G​A​C​C

317 XM_021093444.1 60

T1R3 Forward: ​T​G​T​A​C​C​A​
G​G​T​T​C​T​C​G​T​C​C​C​T
Reverse: ​G​G​C​C​A​T​G​
A​A​C​A​C​T​A​G​G​C​T​G

172 NM_001113288.1 60

β-actin Forward: ​C​A​T​C​G​T​C​
C​A​C​C​G​C​A​A​A​T
Reverse: ​T​G​T​C​A​C​C​T​
T​C​A​C​C​G​T​T​C​C

210 NC_010445 60

Abbreviations: SGLT-1, sodium glucose cotransporter-1; GLUT2, glucose 
transporters 2; GLUT4, glucose transporters 4; T1R2, taste receptor family 1 
member 2; T1R3, taste receptor family 1 member 3
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Kruskal-Wallis test with false discovery rate (FDR) mul-
tiple corrections. When the data exhibited a normal dis-
tribution, one-way ANOVA analysis followed by the LSD 
test was employed. The linear and quadratic responses 
of parameters to different SGs mixture supplemental 
levels were evaluated using regression analysis with a 
curve estimation model. Each pen was considered as the 
experimental unit for the data of growth performance, 
while individual pigs served as the experimental unit for 
the other data. Statistical significance was considered at 
P < 0.05, with a significant trend noted at 0.05 ≤ P < 0.10.

Results
Growth performance
As illustrated in Table 4, increasing SGs mixture supple-
mental level from 0 to 300 mg/kg linearly (P < 0.05) and 
quadratically (P < 0.10) decreased ADG from days 29 
to 42, as well as ADG from days 1 to 42 (P < 0.10). Fur-
thermore, the ADFI from days 1 to 42 showed a trend of 

initially increasing, followed by a decrease as the level of 
dietary SGs mixture supplementation rose (P < 0.10), with 
the highest ADFI recorded in the group supplemented 
with 100 mg/kg of the SGs mixture. However, inclusion 
the SGs mixture in the diet did not have a significant 
impact on the ADG, ADFI, or F/G from days 1 to 28 in 
the piglets (P > 0.05).

Appetite-associated hormones
As displayed in Table 5, increasing SGs mixture supple-
mentation resulted in a linear increase in the serum CCK 
content of weaned piglets (P < 0.05). However, there were 
no significant differences in serum GHRL, GLP-1, LEP, 
and INS levels among the different treatments (P > 0.05).

Gene expression of gut chemoreceptors
As shown in Figs.  2 and 150  mg/kg SGs mixture sup-
plementation resulted in a significant up-regulation of 
the relative mRNA expression of T1R2 and GLUT2 in 

Table 4  Effects of dietary steviol glycosides mixture supplementation on growth performance of weaned piglets
Items Steviol glycosides mixture, mg/kg SEM P-value

0 100 150 200 250 300 ANOVA Linear Quadratic
Day 1 ~ 28
ADG, g/d 370 380 400 369 370 367 4.22 0.216 0.160 0.221
ADFI, g/d 554 534 562 538 542 535 5.78 0.485 0.248 0.514
F/G 1.47 1.41 1.41 1.45 1.47 1.46 0.01 0.134 0.696 0.268
Day 29 ~ 42
ADG, g/d 613 615 586 583 582 572 6.90 0.280 0.030 0.081
ADFI, g/d 972 979 991 934 955 939 9.01 0.430 0.111 0.219
F/G 1.60 1.67 1.67 1.60 1.69 1.66 0.01 0.159 0.179 0.354
Day 1 ~ 42
ADG, g/d 430 436 431 415 420 410 3.97 0.371 0.052 0.098
ADFI, g/d 668 694 679 676 671 647 5.63 0.115 0.133 0.060
F/G 1.55 1.59 1.58 1.63 1.60 1.58 0.01 0.942 0.314 0.374
Values are mean and pooled SEM, n = 6

Data in the same row with no or the same letter indicate no significant difference (P>0.05), while with different letters mean significant difference (P<0.05)

Abbreviations: BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; F/G, feed to gain ratio

The P values indicate the effects of dietary steviol glycosides mixture supplementation with different levels by one-way ANOVA and linear and quadratic analyses, 
respectively

Table 5  Effects of dietary steviol glycosides mixture supplementation on serum appetite-related hormones in weaned piglets
Items Steviol glycosides mixture, mg/kg SEM P-value

0 100 150 200 250 300 ANOVA Linear Quadratic
GHRL, ng/L 1465.82 1547.11 1567.44 1584.63 1403.29 1528.35 26.78 0.371 0.999 0.527
GLP-1, pM/L 2.36 2.13 1.95 2.23 2.27 2.42 0.07 0.370 0.630 0.105
CCK, ng/L 468.22c 491.70c 527.17bc 531.87abc 586.64ab 620.03a 14.64 0.015 < 0.001 0.001
LEP, ng/L 4062.98 3574.79 3915.89 3829.74 4180.65 3630.82 76.25 0.140 0.688 0.864
INS, mU/L 68.53 59.73 67.83 62.28 61.58 58.51 1.31 0.115 0.077 0.213
Values are mean and pooled SEM, n = 6

Data in the same row with no or the same letter indicate no significant difference (P>0.05), while with different letters mean significant difference (P<0.05)

Abbreviations: GHRL, ghrelin; GLP-1, glucagon-like peptide-1; CCK, cholecystokinin; LEP, leptin; INS, insulin

The P values indicate the effects of dietary steviol glycosides mixture supplementation with different levels by one-way ANOVA and linear and quadratic analyses, 
respectively
abcMeans in the same row with different superscripts differ (P < 0.05)
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Fig. 2  Bar graphs show the effect of dietary steviol glycosides mixture supplementation on the relative mRNA expression of chemoreceptors in the 
jejunum of weaned piglets. All data are expressed as the mean ± SEM (n = 6). Differences were determined by one-way ANOVA followed by LSD test. abc 
Means in the columns with different superscripts differ (P < 0.05)
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the jejunal mucosa compared with the control group 
(P < 0.05). In addition, the relative mRNA expression of 
T1R3 in the jejunal mucosa was significantly increased 
by 150 and 200  mg/kg SGs mixture supplementation 
(P < 0.05). Conversely, 250  mg/kg SGs mixture supple-
mentation significantly decreased the mRNA expression 
of the jejunal mucosa SGLT1 gene compared with the 
control group (P < 0.05). However, the addition of SGs 
mixture did not affect the mRNA expression of the jeju-
nal mucosa GLUT4 gene in weaned piglets (P > 0.05).

Biochemical parameters
As shown in Table 6, increasing SGs mixture supplemen-
tation linearly decreased serum GLU levels (P < 0.05). 
Furthermore, 100 and 150  mg/kg SGs mixture supple-
mentation significantly reduced the concentration of 
serum TBIL compared with the control group (P < 0.05). 
However, the SGs mixture supplementation did not have 
a significant impact on the levels of serum TP, ALB, URE, 
TG, CHO, HDL-C, LDL-C, ALT, AST, ALP, and CRE 
(P > 0.05).

Immunological function indicators
As shown in Table 7, increasing SGs mixture supplemen-
tation linearly decreased the proinflammatory cytokine 
IL-1β levels in serum (P < 0.05). However, there were no 
significant differences in the levels of serum IgA, IgG, 
IgM, IL-1, IL-6, IL-8, TNF-α, TNF-β, IL-10, and IL-22 
among different treatments (P > 0.05).

Antioxidant capacity
As shown in Tables 8 and 150 mg/kg SGs mixture sup-
plementation resulted in a significant reduction in 
serum MDA content compared with the control group 
(P < 0.05). Increasing SGs mixture supplementation 
from 0 to 300 mg/kg linearly and quadratically increased 
serum T-SOD, CAT, and GSH-Px activities (P < 0.05). 
Piglets fed a diet supplemented with 100  mg/kg SGs 
mixture had higher serum T-SOD, CAT, and GSH-Px 
activities (P < 0.05). Moreover, increasing SGs mixture 
supplementation linearly increased hepatic T-AOC con-
tent (P < 0.05). Furthermore, increasing SGs mixture 
supplementation linearly and quadratically increased 
the hepatic T-SOD and GSH-Px activity, as well as mus-
cle T-AOC content (P < 0.05). In contrast, increasing 
SGs mixture supplementation linearly and quadratically 
decreased the MDA content and T-SOD activity in the 
muscle (P < 0.05).

Discussion
The utilization of SGs in livestock and poultry produc-
tion has attracted significant attention due to their ben-
eficial effects on enhancing production performance, 
feed efficiency, and the quality of animal products. For 
instance, research conducted by Jiang et al. [14] demon-
strated that dietary 250  mg/kg stevioside supplementa-
tion significantly increased body weight, ADG, and ADFI 
in Ross 308 broiler chickens. Furthermore, another study 
revealed that including 80 mg/kg of stevia-based sweet-
eners (which contained 0.5% SGs) in the diets of Cobalt 
line broiler chickens for 42 days significantly enhanced 

Table 6  Effects of dietary steviol glycosides mixture supplementation on serum biochemical parameters of weaned piglets
Items Steviol glycosides mixture, mg/kg SEM P-value

0 100 150 200 250 300 ANOVA Linear Quadratic
GLU, mM/L 2.58 1.89 1.99 1.95 1.83 1.97 0.09 0.116 0.028 0.017
TP, g/L 61.19 59.02 59.80 57.33 55.20 59.71 0.89 0.462 0.215 0.336
ALB, g/L 37.52 37.32 32.53 33.37 38.94 37.11 0.99 0.358 0.971 0.388
URE, mM/L 5.14 4.27 4.11 4.51 4.79 4.48 0.19 0.700 0.577 0.404
TG, mM/L 0.52 0.54 0.47 0.51 0.54 0.43 0.02 0.640 0.446 0.639
CHO, mM/L 9.92 10.22 10.71 10.73 10.69 10.14 0.21 0.829 0.496 0.423
HDL-C, mM/L 0.89 0.83 0.85 0.83 0.82 0.84 0.02 0.889 0.316 0.487
LDL-C, mM/L 1.47 1.41 1.44 1.41 1.35 1.41 0.04 0.970 0.476 0.770
ALT, U/L 51.28 44.10 43.37 50.06 44.86 42.23 1.60 0.491 0.221 0.454
AST, U/L 50.93 55.35 50.43 56.98 62.95 50.70 2.76 0.778 0.594 0.775
TBIL, µM/L 16.50a 10.45b 10.07b 14.32ab 15.65a 14.66ab 0.74 0.034 0.785 0.039
ALP, U/L 250.98 199.39 208.73 237.89 237.96 202.52 7.62 0.226 0.402 0.556
CRE, µM/L 105.87 101.45 95.94 101.12 98.51 102.46 1.42 0.464 0.369 0.194
Values are mean and pooled SEM, n = 6

Data in the same row with no or the same letter indicate no significant difference (P>0.05), while with different letters mean significant difference (P<0.05)

Abbreviations: GLU, glucose; TP, total protein; ALB, albumin; URE, urea; TG, triglyceride; CHO, cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; ALP, alkaline phosphatase; CRE, creatinine

The P values indicate the effects of dietary steviol glycosides mixture supplementation with different levels by one-way ANOVA and linear and quadratic analyses, 
respectively
abcMeans in the same row with different superscripts differ (P < 0.05)
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final body weight and ADG [23]. However, it is worth 
noting that Wu et al. [24] reported no significant effect 
of stevioside on ADG, ADFI, F/G, and immune organ 
index in Arbor Acres broilers. In a study involving Shan-
dong black goats, Han et al. [16] reported that adding 
400 to 800  mg/kg of stevioside significantly increased 

both forage hay consumption and total feed intake. Fur-
thermore, introducing 0.3% stevioside into the diet of 
Hanwoo cattle enhanced final weight, weight gain, and 
carcass crude protein content, while also reducing drip 
loss, shear force, and increasing meat color redness value 
in longissimus thoracis, thereby improving meat quality 

Table 7  Effects of dietary steviol glycosides mixture supplementation on immunological function indicators of weaned piglets
Items Steviol glycosides mixture, mg/kg SEM P-value

0 100 150 200 250 300 ANOVA Linear Quadratic
IgA, µg/mL 17.12 15.35 15.78 15.70 15.91 17.34 0.48 0.809 0.943 0.339
IgG, µg/mL 293.70 352.85 320.66 346.67 331.16 303.40 7.53 0.161 0.869 0.071
IgM, µg/mL 22.72 25.70 23.84 22.81 23.52 26.14 0.48 0.152 0.308 0.586
IL-1, ng/L 74.66 73.42 71.57 72.15 75.19 77.84 1.32 0.812 0.499 0.346
IL-1β, ng/L 30.29 28.21 22.06 26.02 24.15 21.20 1.19 0.189 0.022 0.072
IL-6, ng/L 833.32 764.22 810.74 768.28 788.15 794.03 13.78 0.720 0.349 0.457
IL-8, ng/L 292.64 311.34 299.70 292.43 328.00 336.04 6.45 0.259 0.058 0.116
TNF-α, pg/mL 265.14 258.95 221.31 272.57 246.57 246.57 6.82 0.348 0.566 0.685
TNF-β, ng/L 185.94 157.97 149.56 138.00 184.05 174.58 8.43 0.506 0.875 0.250
IL-10, ng/L 66.77 69.34 68.97 70.44 68.97 67.75 1.99 0.997 0.849 0.869
IL-22, ng/L 17.68 15.23 15.95 15.00 17.86 14.60 0.59 0.485 0.412 0.633
Values are mean and pooled SEM, n = 6

Data in the same row with no or the same letter indicate no significant difference (P>0.05), while with different letters mean significant difference (P<0.05)

Abbreviations: IgA, immunoglobulin A; IgG immunoglobulin G; IgM immunoglobulin M; IL-1, interleukin-1; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-8, interleukin-8; 
IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α; TNF-β, tumor necrosis factor-β; IL-10, interleukin-10; IL-22, interleukin-22

The P values indicate the effects of dietary steviol glycosides mixture supplementation with different levels by one-way ANOVA and linear and quadratic analyses, 
respectively

Table 8  Effects of dietary steviol glycosides mixture supplementation on the antioxidant capacity of weaned piglets
Items Steviol glycosides mixture, mg/kg SEM P-value

0 100 150 200 250 300 ANOVA Linear Quadratic
Serum
MDA, nM/mL 3.92a 3.03ab 2.13b 4.06a 3.59a 3.31ab 0.19 0.022 0.862 0.331
T-AOC, mM/L 1.01 0.94 0.98 0.94 0.93 1.00 0.01 0.251 0.559 0.142
T-SOD, U/mL 193.13b 221.53a 225.08a 170.61c 147.43d 168.06cd 5.60 < 0.001 0.001 < 0.001
CAT, U/mL 1.66b 7.27a 6.98a 6.96a 6.10a 6.08a 0.38 < 0.001 0.001 < 0.001
GSH-Px, U/L 782.47b 1089.32a 1065.21a 1019.18a 1003.84a 1044.38a 21.02 < 0.001 0.002 < 0.001
Liver
MDA, nM/mg prot 0.33 0.27 0.19 0.27 0.25 0.22 0.02 0.489 0.120 0.217
T-AOC, mM/g prot 0.08 0.10 0.12 0.13 0.12 0.12 0.01 0.392 0.030 0.069
T-SOD, U/mg prot 545.72c 591.17bc 600.63bc 714.36abc 742.36ab 795.00a 27.76 0.047 0.001 0.004
CAT, U/mg prot 44.05 49.78 52.46 47.24 51.66 45.39 1.72 0.691 0.696 0.358
GSH-Px, U/mg prot 8.25b 33.41a 28.73a 30.44a 34.58a 30.96a 2.13 0.001 0.002 < 0.001
Longissimus thoracis
MDA, nM/mg prot 0.15a 0.11b 0.09b 0.09b 0.09b 0.08b 0.01 0.010 < 0.001 0.001
T-AOC, mM/g prot 0.02a 0.03a 0.02ab 0.02bc 0.02c 0.02bc 0.00 < 0.001 0.001 0.003
T-SOD, U/mg prot 73.86a 76.52a 62.68b 65.83b 61.13b 61.36b 1.41 0.001 < 0.001 0.001
CAT, U/mg prot 0.35 0.44 0.40 0.47 0.48 0.30 0.02 0.104 0.466 0.072
GSH-Px, U/mg prot 2.32 3.99 3.36 2.16 3.03 2.85 0.29 0.447 0.741 0.763
Values are mean and pooled SEM, n = 6

Data in the same row with no or the same letter indicate no significant difference (P>0.05), while with different letters mean significant difference (P<0.05)

Abbreviations: MDA, malondialdehyde; T-AOC total antioxidant capacity; T-SOD, total superoxide dismutase; CAT, catalase; GSH-px, glutathione peroxidase; prot, 
protein

The P values indicate the effects of dietary steviol glycosides mixture supplementation with different levels by one-way ANOVA and linear and quadratic analyses, 
respectively
abcMeans in the same row with different superscripts differ (P < 0.05)
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[25]. Additionally, including 0.3% stevia in the diet of 
growing pigs significantly improved ADG, feed utiliza-
tion, body immunity, and carcass traits including back-
fat thickness [26]. A study indicated that increasing the 
concentration of stevioside or rebaudioside A from 0 to 
300  mg/kg led to a linear increase in ADFI and ADG, 
while also resulting in a linear decrease in F/G from days 
1 to 28 in weaned piglets [27]. Moreover, the addition 
of 167 mg/kg of stevia significantly boosted the ADG of 
weaned piglets in the second week post-weaning. How-
ever, varying proportions of stevia (0.0833%, 0.167%, or 
0.334%) did not significantly affect feed intake or F/G in 
weaned piglets [18], which is consistent with similar find-
ings from this experiment noting no significant effect 
of the SGs mixture on ADG, ADFI, and F/G in weaned 
piglets. Our research revealed a linear and quadratic rela-
tionship between the ADG and the SGs mixture supple-
mental levels, with ADFI exhibiting an initial increase 
followed by a decrease as the amount of SGs mixture in 
the diet increased. This implies that the effectiveness of 
SGs does not necessarily conform to a “more is better” 
principle.

The combination of certain sweeteners often leads to 
a synergistic sweetness effect [28]. A study conducted 
by Tian et al. [22] to assess the temporal perception of 
sweetness and bitterness for six commonly steviol gly-
cosides indicated that Rubusoside and Stevioside display 
an immediate and pronounced bitter taste with a linger-
ing aftertaste. In addition, SGs are commonly associated 
with a somewhat unpleasant bitter aftertaste, particu-
larly at high concentration [29]. The main components 
of the SGs mixture used in this study are Rebaudioside 
A (39.90%) and Stevioside (30.40%). Therefore, the SGs 
mixture may show an unfavorable aftertaste experi-
ence for the piglets due to these reasons, despite the 
sweetness.

Sweet taste receptor cells were regulated by at least 
two signaling pathways, one mediated by a heterodimeric 
G-protein coupled receptor encoded by T1R2/T1R3 
genes and another by glucose transporters and the ATP-
gated potassium (KATP) channel [30]. The perception of 
sweetness is mainly facilitated by the sweet taste receptor 
T1R2/T1R3 present in taste cells of the lingual epithelium 
[31]. However, sweet taste receptors are also found in 
intestinal enteroendocrine cells [19, 32, 33]. Non-nutri-
tive sweeteners have been shown to stimulate the mRNA 
expression of T1R2/T1R3 in the intestine of pigs [34]. 
Stevioside can enhance the function of the sweet taste 
transduction receptor called transient receptor potential 
melastatin 5 (TRPM5) [35], which is a calcium-activated 
cation channel present in type II taste receptor cells. In 
humans, stevioside was also reported to activate mRNA 
expression of T1R2/T1R3 [36]. Accordingly, our findings 
suggest that dietary SGs mixture supplementation can 

activate the mRNA expression of T1R2 and T1R3 in the 
jejunal mucosa of piglets.

A 2-dimensional organoid intestinal model experiment 
indicated that Rebaudioside A can significantly induce 
GLP-1 and CCK secretion [37]. GLP-1 is secreted from 
L cells in the intestine and exerts a strong incretin effect 
by enhancing insulin secretion in response to glucose 
levels and slowing down gastric emptying and motil-
ity [38]. Experiments with mouse and human intestinal 
enteroendocrine cell lines confirmed that Rebaudioside A 
stimulated GLP-1 release in a concentration-dependent 
manner via bitter taste signaling pathways. Contrary to 
this, we did not observe a rising in serum GLP-1 levels 
with increasing dietary SGs mixture supplementation. 
The discrepancy could be attributed to the short half-
life of GLP-1 in the bloodstream. The levels of GLP-1 in 
plasma may not be a precise indicator of its local release 
in the intestine [39]. Consistently, we found a linear 
increase in serum CCK levels with increasing of SGs sup-
plementation. CCK is released postprandially from the I 
cell of the small intestine into the bloodstream, and it has 
been reported to reduce food intake in both humans and 
rodents [40]. In the present study, the ADFI from days 1 
to 42 decreased when the dietary supplementation of the 
SGs mixture reached 300  mg/kg. Our data suggest that 
the SGs mixture may function as an appetite suppressant 
when supplemented at a high concentration.

SGs are considered as a promising phytomedicine for 
managing diabetes. As a low-calorie, intensely sweet 
sugar substitute, it plays a pivotal role in improving the 
body’s blood glucose profile. Existing studies have indi-
cated the effectiveness of stevia consumption in reducing 
postprandial blood glucose and insulin levels compared 
with aspartame and sucrose across lean and obese sub-
jects [41]. When orally administered, SGs are resistant 
to degradation by gastric acid and digestive enzymes in 
the digestive tract. Only a small portion of SGs can be 
completely broken down into the aglycone steviol and 
glucose by the intestinal microflora in the lower intestinal 
tract [42–44]. Despite its sweetness, the limited absorp-
tion of SGs prevents a rapid spike in blood glucose levels 
post-ingestion. Deenadayalan et al. [45]. demonstrated 
that stevioside can effectively promote glucose uptake in 
diabetic gastrocnemius muscles by activating the insulin 
receptor (IR)/insulin receptor substrate-1(IRS-1)/Akt/
GLUT4 pathway. Another study has suggested that SGs 
can mimic the effects of insulin by influencing GLUT 
translocation through the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (Akt) pathway [46]. Interestingly, 
we observed an upregulation of GLUT2 mRNA expres-
sion in the jejunum and a linear decrease in serum GLU 
content, but the underlying mechanism needs further 
research.
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In broiler chickens, dietary SGs supplementation has 
been linked to elevated antibody levels against the New-
castle disease virus [23]. Insights into the mechanism of 
action of steviol glycosides have unveiled their modula-
tory effects on immune responses. These effects include 
the attenuation of pro-inflammatory factors like TNF-α, 
IL-1β, and IL-6 in mastitis-modeled mice by suppress-
ing the toll-like receptor 2 (TLR2), nuclear factor kappa 
B (NF-κB), and MAPK pathways [47]. A study has indi-
cated that SGs and steviol may have the potential to 
inhibit the release of pro-inflammatory cytokines such as 
TNF-α, IL-1β, and IL-6 induced by lipopolysaccharides 
(LPS) by modulating cytokine gene expression through 
the Iκ-Bα/NF-κB signaling pathway [48]. Consistent with 
these findings, our result demonstrates a significant lin-
ear decrease in serum IL-1β level with increasing SGs 
mixture supplementation, and indicates the potential of 
enhancing immune function and reducing inflammation 
of SGs mixture.

Weaning stress can damage the oxidation-antioxidant 
system and induce oxidative stress by decreasing the 
activity of SOD and increasing the concentration of MDA 
and NO [49]. Stevioside has been shown to mitigate 
diquat-induced cytotoxicity, inflammation, and apopto-
sis in IPEC-J2 cells, preserving cellular barrier integrity 
and combating oxidative stress by modulating the NF-κB 
and mitogen-activated protein kinase (MAPK) signal-
ing pathways [21]. In diabetic rats, SGs treatments have 
also demonstrated the ability to significantly enhance 
the activity of T-SOD and CAT in the liver [50]. More-
over, administration of 50  mg/kg stevioside has been 
reported to decrease oxidative stress markers such as 
4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT) 
and alleviate cisplatin-induced oxidative stress [51]. Fur-
thermore, dietary stevioside supplementation normal-
ized LPS-induced changes in protein expression of the 
antioxidant genes of nuclear factor-erythroid 2-related 
factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), and ame-
liorated the redox damage by reducing MDA content and 
increasing total antioxidant capacity in boiler chickens 
[52]. In aged breeder hens, 0.25  g/kg stevioside supple-
mentation significantly enhanced the antioxidant capac-
ity of the ovary and shell glands by increasing the activity 
of CAT, SOD, or GSH-Px and reducing the MDA content 
[53]. Similarly, our findings also highlight that dietary 
SGs mixture supplementation can improve the antioxi-
dant capacity of weaned piglets.

Conclusions
In conclusion, our findings indicate that dietary 
100 ~ 150  mg/kg SGs mixture supplementation modu-
lates gene expression of sweet taste recognition receptors 
and glucose transporters, while also enhancing the anti-
oxidant capacity of weaned piglets.
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